menu

Урок 4. Восьмеричная и шестнадцатеричные системы счисления. Компьютерные системы счисления

Восьмеричная система счисления

 Восьмеричной системой счисления называется позиционная система счисления с основанием 8. Для записи чисел в восьмеричной системе счисления используются цифры: 0, 1, 2, 3, 4, 5, 6, 7.

На основании формулы (1) для целого восьмеричного числа можно записать:

Например: 10638 = 1 • 83 + 0 • 82 + 6 • 81 + 3 • 80 = 56310.

Таким образом, для перевода целого восьмеричного числа в десятичную систему счисления следует перейти к его развёрнутой записи и вычислить значение получившегося выражения.

Для перевода целого десятичного числа в восьмеричную систему счисления следует последовательно выполнять деление данного числа и получаемых целых частных на 8 до тех пор, пока не получим частное, равное нулю. Исходное число в новой системе счисления составляется последовательной записью полученных остатков, начиная с последнего.

Пример 6. Переведём десятичное число 103 в восьмеричную систему счисления.

10310 = 1478 

 Шестнадцатеричная система счисления

Основание: q = 16.

Алфавит: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, Е, F.

Здесь только десять цифр из шестнадцати имеют общепринятое обозначение 0,..., 9. Для записи цифр с десятичными количественными эквивалентами 10, 11, 12, 13, 14, 15 обычно используются первые пять букв латинского алфавита.

Таким образом, запись 3AF16 означает:

Пример 7. Переведём десятичное число 154 в шестнадцатеричную систему счисления.

15410 = 9А16 

 Презентация «Системы счисления»

 Презентация «Системы счисления» (Open Document Format)

Ссылки на ресурсы ЕК ЦОР

Федеральный центр информационных образовательных ресурсов: